eISSN:
 2639-8001

All Issues

Volume 3, 2021

Volume 2, 2020

Volume 1, 2019





FoDS Flyer: showing all essential information of the journal.
Foundations of Data Science (FoDS) invites submissions focusing on advances in mathematical, statistical, and computational methods for data science. Results should significantly advance current understanding of data science, by algorithm development, analysis, and/or computational implementation which demonstrates behavior and applicability of the algorithm. Fields covered by the journal include, but are not limited to Bayesian Statistics, High Performance Computing, Inverse Problems, Data Assimilation, Machine Learning, Optimization, Topological Data Analysis, Spatial Statistics, Nonparametric Statistics, Uncertainty Quantification, and Data Centric Engineering. Expository and review articles are welcome. Papers which focus on applications in science and engineering are also encouraged, however the method(s) used should be applicable outside of one specific application domain.

Call for Papers Special Issue "Data Science Education Research" of Foundations of Data Science (click to view details)

Call for Papers Special Issue "Topological methods in data analysis, machine learning and artificial intelligence" of Foundations of Data Science (click to view details)

Call for Papers Special Issue "Data Assimilation" of Foundations of Data Science (click to view details)

Call for Papers Special Issue "Sequential Monte Carlo Methods" of Foundations of Data Science (click to view details)

Select all articles

Export/Reference:

Homotopy continuation for the spectra of persistent Laplacians
Xiaoqi Wei and Guo-Wei Wei
2021, 3(4) : 677-700 doi: 10.3934/fods.2021017 +[Abstract](616) +[HTML](406) +[PDF](2061.67KB)
Learning landmark geodesics using the ensemble Kalman filter
Andreas Bock and Colin J. Cotter
2021, 3(4) : 701-727 doi: 10.3934/fods.2021020 +[Abstract](587) +[HTML](257) +[PDF](1448.29KB)
Generalized penalty for circular coordinate representation
Hengrui Luo, Alice Patania, Jisu Kim and Mikael Vejdemo-Johansson
2021, 3(4) : 729-767 doi: 10.3934/fods.2021024 +[Abstract](577) +[HTML](208) +[PDF](5721.65KB)
An adaptation for iterative structured matrix completion
Henry Adams, Lara Kassab and Deanna Needell
2021, 3(4) : 769-791 doi: 10.3934/fods.2021028 +[Abstract](254) +[HTML](105) +[PDF](2487.2KB)
Score matching filters for Gaussian Markov random fields with a linear model of the precision matrix
Marie Turčičová, Jan Mandel and Kryštof Eben
2021, 3(4) : 793-824 doi: 10.3934/fods.2021030 +[Abstract](293) +[HTML](122) +[PDF](2154.76KB)
The (homological) persistence of gerrymandering
Moon Duchin, Tom Needham and Thomas Weighill
2021doi: 10.3934/fods.2021007 +[Abstract](1217) +[HTML](530) +[PDF](23416.84KB)
Intrinsic disease maps using persistent cohomology
Daniel Amin and Mikael Vejdemo-Johansson
2021doi: 10.3934/fods.2021008 +[Abstract](880) +[HTML](445) +[PDF](720.82KB)
A density-based approach to feature detection in persistence diagrams for firn data
Austin Lawson, Tyler Hoffman, Yu-Min Chung, Kaitlin Keegan and Sarah Day
2021doi: 10.3934/fods.2021012 +[Abstract](662) +[HTML](430) +[PDF](5777.15KB)
ToFU: Topology functional units for deep learning
Christopher Oballe, David Boothe, Piotr J. Franaszczuk and Vasileios Maroulas
2021doi: 10.3934/fods.2021021 +[Abstract](461) +[HTML](327) +[PDF](1001.97KB)
Reconstructing linearly embedded graphs: A first step to stratified space learning
Yossi Bokor, Katharine Turner and Christopher Williams
2021doi: 10.3934/fods.2021026 +[Abstract](426) +[HTML](184) +[PDF](880.46KB)
Euler characteristic surfaces
Gabriele Beltramo, Primoz Skraba, Rayna Andreeva, Rik Sarkar, Ylenia Giarratano and Miguel O. Bernabeu
2021doi: 10.3934/fods.2021027 +[Abstract](532) +[HTML](196) +[PDF](6801.05KB)
Evaluation of EDISON's data science competency framework through a comparative literature analysis
Karl R. B. Schmitt, Linda Clark, Katherine M. Kinnaird, Ruth E. H. Wertz and Björn Sandstede
2021doi: 10.3934/fods.2021031 +[Abstract](305) +[HTML](105) +[PDF](915.18KB)
Facilitating API lookup for novices learning data wrangling using thumbnail graphics
Lovisa Sundin, Nourhan Sakr, Juho Leinonen and Quintin Cutts
2021doi: 10.3934/fods.2021032 +[Abstract](149) +[HTML](95) +[PDF](1400.58KB)
Capturing dynamics of time-varying data via topology
Lu Xian, Henry Adams, Chad M. Topaz and Lori Ziegelmeier
2021doi: 10.3934/fods.2021033 +[Abstract](267) +[HTML](75) +[PDF](8941.93KB)
Constrained Ensemble Langevin Monte Carlo
Zhiyan Ding and Qin Li
2021doi: 10.3934/fods.2021034 +[Abstract](91) +[HTML](36) +[PDF](2795.07KB)
Addressing confirmation bias in middle school data science education
Sarai Hedges and Kim Given
2022doi: 10.3934/fods.2021035 +[Abstract](94) +[HTML](30) +[PDF](253.67KB)
An extension of the angular synchronization problem to the heterogeneous setting
Mihai Cucuringu and Hemant Tyagi
2022doi: 10.3934/fods.2021036 +[Abstract](4) +[HTML](2) +[PDF](5793.07KB)
Smart Gradient - An adaptive technique for improving gradient estimation
Esmail Abdul Fattah, Janet Van Niekerk and Håvard Rue
2022doi: 10.3934/fods.2021037 +[Abstract](105) +[HTML](23) +[PDF](870.54KB)
Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization
Marc Bocquet, Julien Brajard, Alberto Carrassi and Laurent Bertino
2020, 2(1) : 55-80 doi: 10.3934/fods.2020004 +[Abstract](4111) +[HTML](1283) +[PDF](800.0KB) Cited By(10)
Consistent manifold representation for topological data analysis
Tyrus Berry and Timothy Sauer
2019, 1(1) : 1-38 doi: 10.3934/fods.2019001 +[Abstract](4888) +[HTML](2238) +[PDF](3141.49KB) Cited By(3)
Semi-supervised classification on graphs using explicit diffusion dynamics
Robert L. Peach, Alexis Arnaudon and Mauricio Barahona
2020, 2(1) : 19-33 doi: 10.3934/fods.2020002 +[Abstract](2469) +[HTML](1165) +[PDF](347.25KB) Cited By(3)
Accelerating Metropolis-Hastings algorithms by Delayed Acceptance
Marco Banterle, Clara Grazian, Anthony Lee and Christian P. Robert
2019, 1(2) : 103-128 doi: 10.3934/fods.2019005 +[Abstract](4038) +[HTML](2103) +[PDF](685.26KB) Cited By(2)
Power weighted shortest paths for clustering Euclidean data
Daniel Mckenzie and Steven Damelin
2019, 1(3) : 307-327 doi: 10.3934/fods.2019014 +[Abstract](2416) +[HTML](1257) +[PDF](663.53KB) Cited By(2)
Partitioned integrators for thermodynamic parameterization of neural networks
Benedict Leimkuhler, Charles Matthews and Tiffany Vlaar
2019, 1(4) : 457-489 doi: 10.3934/fods.2019019 +[Abstract](2687) +[HTML](1184) +[PDF](10550.03KB) Cited By(2)
Learning by active nonlinear diffusion
Mauro Maggioni and James M. Murphy
2019, 1(3) : 271-291 doi: 10.3934/fods.2019012 +[Abstract](3284) +[HTML](1295) +[PDF](4001.74KB) Cited By(2)
Levels and trends in the sex ratio at birth and missing female births for 29 states and union territories in India 1990–2016: A Bayesian modeling study
Fengqing Chao and Ajit Kumar Yadav
2019, 1(2) : 177-196 doi: 10.3934/fods.2019008 +[Abstract](3529) +[HTML](1300) +[PDF](2577.91KB) Cited By(2)
Multi-fidelity generative deep learning turbulent flows
Nicholas Geneva and Nicholas Zabaras
2020, 2(4) : 391-428 doi: 10.3934/fods.2020019 +[Abstract](1893) +[HTML](635) +[PDF](14569.45KB) Cited By(1)
On the incorporation of box-constraints for ensemble Kalman inversion
Neil K. Chada, Claudia Schillings and Simon Weissmann
2019, 1(4) : 433-456 doi: 10.3934/fods.2019018 +[Abstract](1938) +[HTML](1146) +[PDF](1289.35KB) Cited By(1)
Issues using logistic regression with class imbalance, with a case study from credit risk modelling
Yazhe Li, Tony Bellotti and Niall Adams
2019, 1(4) : 389-417 doi: 10.3934/fods.2019016 +[Abstract](3591) +[HTML](1240) +[PDF](4084.46KB) PDF Downloads(3269)
Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization
Marc Bocquet, Julien Brajard, Alberto Carrassi and Laurent Bertino
2020, 2(1) : 55-80 doi: 10.3934/fods.2020004 +[Abstract](4111) +[HTML](1283) +[PDF](800.0KB) PDF Downloads(980)
Stochastic gradient descent algorithm for stochastic optimization in solving analytic continuation problems
Feng Bao and Thomas Maier
2020, 2(1) : 1-17 doi: 10.3934/fods.2020001 +[Abstract](2878) +[HTML](1263) +[PDF](418.16KB) PDF Downloads(667)
Probabilistic learning on manifolds
Christian Soize and Roger Ghanem
2020, 2(3) : 279-307 doi: 10.3934/fods.2020013 +[Abstract](2259) +[HTML](1147) +[PDF](722.55KB) PDF Downloads(528)
Multi-fidelity generative deep learning turbulent flows
Nicholas Geneva and Nicholas Zabaras
2020, 2(4) : 391-428 doi: 10.3934/fods.2020019 +[Abstract](1893) +[HTML](635) +[PDF](14569.45KB) PDF Downloads(505)
Semi-supervised classification on graphs using explicit diffusion dynamics
Robert L. Peach, Alexis Arnaudon and Mauricio Barahona
2020, 2(1) : 19-33 doi: 10.3934/fods.2020002 +[Abstract](2469) +[HTML](1165) +[PDF](347.25KB) PDF Downloads(477)
Accelerating Metropolis-Hastings algorithms by Delayed Acceptance
Marco Banterle, Clara Grazian, Anthony Lee and Christian P. Robert
2019, 1(2) : 103-128 doi: 10.3934/fods.2019005 +[Abstract](4038) +[HTML](2103) +[PDF](685.26KB) PDF Downloads(455)
Consistent manifold representation for topological data analysis
Tyrus Berry and Timothy Sauer
2019, 1(1) : 1-38 doi: 10.3934/fods.2019001 +[Abstract](4888) +[HTML](2238) +[PDF](3141.49KB) PDF Downloads(452)
Modelling dynamic network evolution as a Pitman-Yor process
Francesco Sanna Passino and Nicholas A. Heard
2019, 1(3) : 293-306 doi: 10.3934/fods.2019013 +[Abstract](2976) +[HTML](1425) +[PDF](1164.04KB) PDF Downloads(424)
Quantum topological data analysis with continuous variables
George Siopsis
2019, 1(4) : 419-431 doi: 10.3934/fods.2019017 +[Abstract](2593) +[HTML](1541) +[PDF](1473.63KB) PDF Downloads(393)

Editors

Referees

Librarians

Special Issues

Email Alert

[Back to Top]