
ISSN:
1078-0947
eISSN:
1553-5231
All Issues
Discrete & Continuous Dynamical Systems - A
Open Access Articles
In this paper, we consider the quadratic nonlinear Schrödinger system in three space dimensions. Our aim is to obtain sharp scattering criteria. Because of the mass-subcritical nature, it is difficult to do so in terms of conserved quantities. The corresponding single equation is studied by the second author and a sharp scattering criterion is established by introducing a distance from a trivial scattering solution, the zero solution. By the structure of the nonlinearity we are dealing with, the system admits a scattering solution which is a pair of the zero function and a linear Schrödinger flow. Taking this fact into account, we introduce a new optimizing quantity and give a sharp scattering criterion in terms of it.
We are interested in the Neumann problem of a 1D stationary Allen-Cahn equation with a nonlocal term. In our previous papers [
The paper is devoted to analysis of far-from-equilibrium pattern formation in a system of a reaction-diffusion equation and an ordinary differential equation (ODE). Such systems arise in modeling of interactions between cellular processes and diffusing growth factors. Pattern formation results from hysteresis in the dependence of the quasi-stationary solution of the ODE on the diffusive component. Bistability alone, without hysteresis, does not result in stable patterns. We provide a systematic description of the hysteresis-driven stationary solutions, which may be monotone, periodic or irregular. We prove existence of infinitely many stationary solutions with jump discontinuity and their asymptotic stability for a certain class of reaction-diffusion-ODE systems. Nonlinear stability is proved using direct estimates of the model nonlinearities and properties of the strongly continuous diffusion semigroup.
Some reaction-diffusion models describing the cell polarity are proposed, where the system has two independent variables standing for the concentration of proteins in the membrane and the cytosol respectively. In this article we deal with such a polarity model consisting of one equation on a unit sphere and the other one in the ball inside the sphere. The two equations are coupled through a nonlinear boundary condition and the total mass is conserved. We investigate the linearized stability of a constant steady state and provide conditions under which a Turing type instability takes place, namely, the constant state is stable against spatially uniform perturbations on the sphere for all choices of diffusion rates, while unstable against nonuniform perturbations on the sphere as the diffusion coefficient of the equation on the sphere becomes small relative to the one in the ball.
We study the following Neumann problem in one dimension,
where
In 1979, Shigesada, Kawasaki and Teramoto [
We consider fully nonlinear uniformly elliptic cooperative systems with quadratic growth in the gradient, such as
for
We obtain uniform a priori bounds for systems, under a weak coupling hypothesis that seems to be optimal. As an application, we also establish existence and multiplicity results for these systems, including a branch of solutions which is new even in the scalar case.
The purpose of this paper is to study the solutions of
with
Under the assumption
For a balanced bistable reaction-diffusion equation, the existence of axisymmetric traveling fronts has been studied by Chen, Guo, Ninomiya, Hamel and Roquejoffre [
We establish a general theory on the existence of fixed points and the convergence of orbits in order-preserving semi-dynamical systems having a certain mass conservation property (or, equivalently, a first integral). The base space is an ordered metric space and we do not assume differentiability of the system nor do we even require linear structure in the base space. Our first main result states that any orbit either converges to a fixed point or escapes to infinity (convergence theorem). This will be shown without assuming the existence of a fixed point. Our second main result states that the existence of one fixed point implies the existence of a continuum of fixed points that are totally ordered (structure theorem). This latter result, when applied to a linear problem for which
In this paper, by constructing a family of approximation solutions and applying a specific version of the Implicit Function Theorem (please see, e.g. [
In this paper, we consider the singular limit of an energy minimizing problem which is a semi-limit of a singular elliptic equation modeling steady states of thin film equation with both Van der Waals force and Born repulsion force. We show that the singular limit of energy minimizers is a Dirac mass located on the boundary point with the maximum curvature.
We look for solutions
for all
In this paper, we study the global dynamics of a general
In this paper we revisit the nonlinear Maxwell system and Maxwell-Stokes system. One of the main feature of these systems is that existence of solutions depends not only on the natural of nonlinearity of the equations, but also on the type of the boundary conditions and the topology of the domain. We review and improve our recent results on existence of solutions by using the variational methods together with modified De Rham lemmas, and the operator methods. Regularity results by the reduction method are also discussed and improved.
This paper considers a two-patch system with asymmetric diffusion rates, in which exploitable resources are included. By using dynamical system theory, we exclude periodic solution in the one-patch subsystem and demonstrate its global dynamics. Then we exhibit uniform persistence of the two-patch system and demonstrate uniqueness of the positive equilibrium, which is shown to be asymptotically stable when the diffusion rates are sufficiently large. By a thorough analysis on the asymptotic population abundance, we demonstrate necessary and sufficient conditions under which the asymmetric diffusion rates can lead to the result that total equilibrium population abundance in heterogeneous environments is larger than that in heterogeneous/homogeneous environments with no diffusion, which is not intuitive. Our result extends previous work to the situation of asymmetric diffusion and provides new insights. Numerical simulations confirm and extend our results.
We consider the degenerate haptotaxis system
endowed with no-flux boundary conditions in a bounded open interval
We now prove that under the additional restriction
2019 Impact Factor: 1.338
Readers
Authors
Editors
Referees
Librarians
More
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]